无穷小的比较
定义1(无穷小量)若\(lim_{x\to x_0}f(x)=0\),则称\(f(x)\)为当\(x\to x_0\)时的无穷小量.
定义2(无穷小的比较) 1) \(若lim\frac{\alpha(x)}{\beta(x)}=0则称\alpha(x)是\beta(x)的高阶无穷小\) 2) \(若lim\frac{\alpha(x)}{\beta(x)}=\infty则称\alpha(x)是\beta(x)的低阶无穷小\) 3) \(若lim\frac{\alpha(x)}{\beta(x)}=a\neq0则称\alpha(x)是\beta(x)的同阶无穷小\) 4) \(若lim\frac{\alpha(x)}{\beta(x)}=1则称\alpha(x)是\beta(x)的等价无穷小\) \(记为\alpha(x)\sim \beta(x)\) 5) \(若lim\frac{\alpha(x)}{[\beta(x)]^k}=a\neq 0,k>0则称\alpha(x)是\beta(x)的k阶无穷小\)
常用等价无穷小 \(sin\;x\sim x\sim tan\;x\sim arcsin\;x\sim arctan\;x\) \(1-cos\;x \sim \frac{1}{2}x^2\)
\(当x\to0时,\sqrt[n]{1+x}-1\sim\frac{1}{n}x\)
二项式展开公式 $$ (a + b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k $$
其中:
- \(n\) 是非负整数(若扩展可取任意实数或复数)
- \(\binom{n}{k} = \frac{n!}{k!(n-k)!}\) 是二项式系数
- 当 \(n\) 是正整数时,求和范围为 \(k = 0, 1, \dots, n\)
- 当 \(n\) 是任意实数时,\(\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{k!}\) 且和式是无穷的
例如:
定理1 \(\alpha(x)\sim \beta(x)的充要条件是\alpha(x)=\beta(x)+o(\beta(x))\) 定理2 \(设\alpha(x)\sim \alpha_{1}(x),\beta(x)\sim\beta_{1}(x),且lim\frac{\alpha_{1}(x)}{\beta_{1}(x)}存在,则lim\frac{\alpha(x)}{\beta(x)}=lim\frac{\alpha_{1}(x)}{\beta_{1}(x)}\)